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A cation-selective conducting particle is suspended in an electrolyte solution and is
exposed to a uniformly applied electric field. The electrokinetic transport processes
are described in a closed mathematical model, consisting of differential equations,
representing the physical transport in the electrolyte, and boundary conditions,
representing the physicochemical conditions on the particle boundary and at large
distances away from it. Solving this mathematical problem would in principle provide
the electrokinetic flow about the particle and its concomitant velocity relative to the
otherwise quiescent fluid.

Using matched asymptotic expansions, this problem is analysed in the thin-
Debye-layer limit. A macroscale description is extracted, whereby effective boundary
conditions represent appropriate asymptotic matching with the Debye-scale fields. This
description significantly differs from that corresponding to a chemically inert particle.
Thus, ion selectivity on the particle surface results in a macroscale salt concentration
polarization, whereby the electric potential is rendered non-harmonic. Moreover,
the uniform Dirichlet condition governing this potential on the particle surface
is transformed into a non-uniform Dirichlet condition on the macroscale particle
boundary. The Dukhin–Derjaguin slip formula still holds, but with a non-uniform
zeta potential that depends, through the cation-exchange kinetics, upon the salt
concentration and electric field distributions. For weak fields, an approximate solution
is obtained as a perturbation to a reference state. The linearized solution corresponds
to a uniform zeta potential; it predicts a particle velocity which is proportional to
the applied field. The associated electrokinetic flow is driven by two different agents,
electric field and salinity gradients, which are of comparable magnitude. Accordingly,
this flow differs significantly from that occurring in electrophoresis of chemically inert
particles.

1. Introduction
Volumetric charge in electrolyte solutions is confined to boundary layers of

characteristic thickness δ∗, known as the ‘Debye length’. In most practical situations,
this thickness is extremely small when compared with the typical scale of interest, say
a∗. (Dimensional quantities appear throughout with a star superscript.) Thus, ionic
transport is characterized by the parameter

δ =
δ∗

a∗ � 1. (1.1)
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In that asymptotic limit, the vast majority of the fluid remains approximately
electroneutral. In symmetric electrolytes, this implies equal anionic and cationic
concentrations. The simplest mode of ionic current through such electroneutral bulk
is via Ohmic conduction at uniform anionic and cationic concentrations. The electric
current is then driven by electromigratory fluxes, proportional to the electric field.

This mode, however, cannot be realized when the current must pass through an
adjacent ion-selective medium (Levich 1962; Probstein 1989). Consider for example
the ionic transport from an electrolyte to a solid ion exchanger, which is impermeable
to anions. In that case, the need for a zero anion flux necessitates the development
of anion concentration gradient; electroneutrality then implies a concomitant cation
concentration gradient. The simplest situation entails one-dimensional transport in
an electrochemical cell of width a∗ bounded by ion-exchange membranes. Volumetric
charge is limited to the thin Debye layers adjacent to these two membranes. Outside
these layers the fluid remains electroneutral. To satisfy zero anionic current, the salt
distribution becomes polarized, decreasing towards the cathodic exchanger. Thus, the
electroneutral region constitutes a ‘diffusion layer’ (Rubinstein & Zaltzman 2001).

When the exchanger boundary is curved, as in the case of an ion-exchange particle
(e.g. resin or clay), this phenomenon becomes more complicated. While the electric
field normal to the boundary again leads to concentration polarization, the tangential
field now acts on the Debye layer charge, resulting in a flow field. When the particle is
freely suspended, this field leads in general to particle motion relative to the otherwise
quiescent electrolyte. The curvilinear geometry affects the diffusion-layer length scale.
While in the one-dimensional cell geometry this scale was simply provided by the cell
width, in the curvilinear case it is dictated by the characteristic curvature 1/a∗ of the
exchanger boundary (in the case of a particle, a∗ is its characteristic size).

Thus, the electrokinetic transport around an ion-exchange particle constitutes a
multi-scale physicochemical problem, which is the focus of the present work. Beyond
fundamental interest, understanding of this problem constitutes an initial step for
modelling of various low-dispersion electro-chromatography protocols. For example,
packed beds of spherical ion-exchange particles are used for separation of charged
analytes in microfluidic channels (Leinweber & Tallarek 2004).

The aim of this paper is to construct a closed mathematical model which describes
the electrokinetic transport under steady-state conditions in the thin-Debye-layer limit.
For this purpose, we follow related works (Ben & Chang 2002; Ben, Demekhin &
Chang 2004; Kalaı̆din, Demekhin & Korovyakovskiı̆ 2009) and consider a simple
model of a spherical cation exchanger which is highly conducting, whereby the
electric potential at its boundary is uniform. Another assumption appearing in these
analyses, analogous to that appearing in prevailing membrane models (Rubinstein &
Zaltzman 2001; Zaltzman & Rubinstein 2007), is that of ideal ion selectivity, whereby
the cationic concentration at the exchanger boundary is fixed. We here actually allow
for a more realistic ion-selectivity model, assuming Butler–Volmer kinetics. As it
turns out, the resulting analysis is rather insensitive to the ion-selectivity model. At
fast surface kinetics, the Butler–Volmer kinetics degenerate to the ideal-selectivity
model.

The coupled chemical and physical transport processes are described in a continuum
electrokinetic framework in terms of the two ionic concentrations, the electric
potential and the flow field. In addition to the differential equations and boundary
conditions which govern these fields the electrokinetic model also comprises the
integral constraint of a force-free particle, which serves to uniquely determine the
particle velocity with which it translates relative to the quiescent electrolyte.
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In the thin-Debye-layer limit the problem is analysed using singular inner–outer
perturbations which separately handle the Debye layer and the electroneutral bulk
surrounding it. Asymptotic matching between these two regions furnishes a self-
contained macroscale model; at leading-order, it comprises of coupled equations
governing the electric field, salt concentration and fluid velocity in the electroneutral
bulk. These bulk fields also satisfy effective ‘boundary conditions’, representing the
requisite matching with the Debye-layer fields.

An approximate solution is obtained for weak fields, where salt and charge are
transported from the anodic part of the particle to its cathodic part. The zeta potential
is uniform to leading order, and the particle drifts with a velocity that is linear in
the applied electric field. The flow field is driven by both electric field and salinity
gradients, and is accordingly different from that in classical electrophoresis of an inert
particle. Specifically, Smoluchowski’s formula does not apply.

The paper is structured as follows: the governing electrokinetic model is formulated
in the next section. The thin-Debye-layer limit is addressed in § 3. In § 4 we obtain the
reduced macroscale description, and compare it to the related model of a chemically
inert (ideally polarizable) particle. An approximate solution for weak fields, together
with an analytic expression for the particle velocity, is outlined in § 5. Another scalar
quantity of interest, net particle charge, is evaluated in § 6. The results, and their
relations to electro-osmosis of the second kind, are discussed in § 7.

2. Electrokinetic model
We consider an unbounded electrolyte solution (dielectric permittivity ε∗, viscosity

µ∗, ionic valences ±z). When undisturbed, the cations and anions possess an
identical concentration, say c∗. An anion-impermeable spherical particle (radius a∗) is
introduced into the solution. The particle is highly conductive, and as such possesses
a uniform electric potential. We assume that the cation selectivity of the particle is
expressed by the Butler–Volmer kinetics, where the dissolution rate per unit area,

k∗
(

1 − c∗
+

γ c∗

)
, (2.1)

is a function of the cationic concentration c∗
+ on the surface. The two terms in (2.1)

respectively represent cation dissolution and deposition, with k∗ acting as an anodic
rate constant and γ c∗ being the fast-kinetics equilibrium concentration.

A uniform electric field E∗ is applied at large distances from the particle. After a
short transient period (Yossifon, Frankel & Miloh 2009), the electrokinetic transport
processes reach a steady state in a particle fixed reference frame. Since the applied
field renders the problem asymmetric, it causes the particle to move relative to the
quiescent suspending electrolyte. Our goal is to calculate the electrokinetic flow at
these steady-state conditions, and, specifically, the associated drift velocity of the
freely suspended particle.

2.1. Dimensionless formulation

We employ the dimensionless notation of Saville (1977). Thus, the spatial coordinates
are normalized by a∗, the concentration c± by c∗ and the electric potential ϕ by the
thermal voltage (about 25 mV in a univalent solution)

ϕ∗ =
R∗T ∗

zF ∗ , (2.2)
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where R∗ is the gas constant, T ∗ the absolute temperature and F ∗ Faraday’s constant.
Balancing viscous stresses and Coulomb body forces yields the velocity unit

v∗ =
ε∗ϕ∗2

µ∗a∗ , (2.3)

for the velocity field v. The stress tensors, together with the pressure field p, are
normalized by µ∗v∗/a∗. Forces are normalized by µ∗v∗a∗.

2.2. Governing equations

The electrokinetic problem is formulated in a reference frame attached to the particle,
wherein it is stationary. The differential equations governing the pertinent fields
comprise of the following.

(a) The Nernst–Planck conservation equations, describing ionic transport by the
combined action of diffusion, electromigration and convection (Hunter 2000)

∇ · j± + α v · ∇c± = 0. (2.4)

Here

j± = −∇c± ∓ c±∇ϕ (2.5)

are the ionic fluxes normalized with D∗c∗/a∗, wherein D∗ is the ionic diffusivity,
presumed identical for both ionic species. The dimensionless group α = a∗v∗/D∗

constitutes the Péclet number. In view of (2.3),

α =
ε∗ϕ∗2

µ∗D∗ ; (2.6)

thus, this number is independent of both particle size a∗ and ambient salt
concentration c∗. For typical ionic diffusivities α ≈ 0.5 (Saville 1977).
Use of the reduced variables

c =
c+ + c−

2
and q =

c+ − c−

2
(2.7a, b)

transforms (2.4) to the salt and charge conservation equations

∇ · (∇c + q∇ϕ) = α v · ∇c, (2.8)

∇ · (∇q + c∇ϕ) = α v · ∇q. (2.9)

These equations can be written in the alternative form

∇ · j + α v · ∇c = 0 and ∇ · i + α v · ∇q = 0. (2.10a, b)

wherein

j = −∇c − q∇ϕ (2.11)

is the salt flux, normalized by 2D∗c∗/a∗, and

i = −∇q − c∇ϕ (2.12)

is the current density, normalized by 2zF ∗D∗c∗/a∗. Note that

j+ = j + i, j− = j − i . (2.13a, b)

(b) Poisson’s equation governing the electric potential ϕ

δ2∇2ϕ = −q. (2.14)
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Here, δ = δ∗/a∗, in which δ∗ is the Debye thickness

δ∗2
=

ε∗ϕ∗

2zF ∗c∗ . (2.15)

(c) The continuity equation

∇ · v = 0, (2.16)

and inhomogeneous Stokes equation

∇2v + ∇2ϕ∇ϕ = ∇p, (2.17)

governing v and p. Since the latter represents momentum balance at zero inertia, it
can be alternatively written as a statement of a divergence-free stress

∇ · (SN + SM) = 0. (2.18)

Here, SN and SM denote the Newtonian and Maxwell stress tensors, respectively

SN = −p I + ∇v + (∇v)† , SM = ∇ϕ∇ϕ − 1
2
∇ϕ · ∇ϕ I, (2.19a, b)

I being the unity dyadic and † denoting transposition.

2.3. Boundary conditions

The bundary conditions are conveniently presented in a coordinate system whose
origin coincides with the particle centre; the x-axis is taken in the direction of
the applied field. We also employ spherical coordinates (r, θ, � ), r being the radial
coordinate, θ the longitudinal angle (θ = 0 in the positive x-direction) and � the
azimuthal angle. Thus, the radial ionic fluxes, denoted by j±, adopt the form

j± = −∂c±

∂r
∓ c±

∂ϕ

∂r
. (2.20)

At large distances away from the particle the ionic concentrations approach the
ambient unity value,

c± → 1; (2.21)

and the electric field approaches the uniform applied field

∇ϕ → −β ı̂. (2.22)

Here,

β =
a∗E∗

ϕ∗ (2.23)

is the dimensionless applied field magnitude, and ı̂ is a unit vector in the x-direction.
In general, a freely suspended particle acquires a non-zero velocity in response to

the applied field. Because of axial symmetry, this velocity, say U , is in the x-direction.
Thus, at the co-moving reference frame the far-field velocity condition is

v → −U ı̂. (2.24)

The value of U is not specified a priori; rather, it is determined using the constraint
of a force-free particle ∮

r=1

(SN + SM) · êr dA = 0. (2.25)

The conditions on the particle boundary r =1 comprise:
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(a) Anionic impermeability

j− = 0. (2.26)

(b) Cation selectivity

c+ = γ

(
1 − j+

k

)
, (2.27)

with k = k∗a/D∗c∗. (When transforming from dimensional version (2.1), this equation
has been conveniently written as a boundary condition governing c+.)

(c) The requirement of a uniform electric potential, say V ,

ϕ = V . (2.28)

(d) Mass-impermeability and no-slip

v = 0. (2.29)

The dimensionless problem (2.4)–(2.29) is clearly symmetric about the x-axis, whereby
all scalar fields must be independent of the azimuthal angle � . This symmetry also
implies that the fluid velocity adopts the form v = êru + êθv, where both u and v are
independent of � .

The present model reflects the physical and chemical processes occurring at steady-
state conditions. It expresses the dependence of the dimensionless transport processes
upon the five governing parameters α, β , γ , δ and k. (Clearly, these processes cannot
depend upon the arbitrary value chosen for the particle potential V .) Solving this
model provides the electrokinetic flow, and then the requisite scalar U , as a function
of these parameters.

3. The thin-Debye-layer limit
In most realistic scenarios, the Debye thickness is vanishingly small compared with

particle size, δ � 1. This scale disparity renders any numerical analysis of the model
problem (2.4)–(2.29) practically impossible. Fortunately, it is exactly this disparity
which allows us to analyse this problem analytically using singular inner–outer
expansions, the inner region being the Debye layer of thickness δ around the particle,
and the outer region being the remaining fluid bulk surrounding it.

3.1. Bulk scale analysis

In the outer region, we employ the macroscale radial coordinate R, which is
distinguishable from r in its inability to discern the Debye-layer structure. Specifically,
R =1 constitutes the outer edge of the Debye layer – the macroscale particle
‘boundary’ – as opposed to the literal particle boundary r =1.

We postulate the generic expansion

f (r, θ; δ) ∼ F (R, θ) + · · · , (3.1)

for all the pertinent fields. We only seek the leading-order description F . Substitution
into the governing equations readily provides the leading-order outer description.
Thus, Poisson’s equation (2.14) implies electroneutrality,

Q = 0, (3.2)

whereby

C± = C. (3.3)
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Then, the leading-order salt flux and current density become

J = −∇C and I = −C∇Φ. (3.4a, b)

Matching with the inner region also requires the radial ionic fluxes; use of (2.13) in
conjunction with (3.4) readily yields

J+ = −∂C

∂R
− C

∂Φ

∂R
, J− = −∂C

∂R
+ C

∂Φ

∂R
. (3.5a, b)

The leading-order salt and charge conservation equations appear as

∇ · J + αV · ∇C = 0, ∇ · I = 0, (3.6a, b)

Substituting (3.4), we find that the salt concentration C is governed by the diffusion–
advection equation

∇2C = α V · ∇C, (3.7)

while the electric potential satisfies the elliptic equation

∇ · (C∇Φ) = 0; (3.8)

The leading-order flow equations governing V and P retain the following form
(similar to (2.16) and (2.17)):

∇ · V = 0, ∇2V + ∇2Φ∇Φ = ∇P. (3.9a, b)

Note that the Coulomb body force appears in the momentum balance, despite leading-
order electroneutrality. This body force reflects O(δ2) volumetric charge density, which
is non-zero whenever Φ is non-harmonic.

The differential equations are supplemented by far-field conditions,

C → 1, ∇Φ → −β ı̂, V → −U ı̂, (3.10a, b, c)

wherein U is now to be interpreted as the leading-order particle velocity.
The boundary conditions (2.27) and (2.28) and the integral condition (2.25) apply

at the literal boundary r = 1, and as such are not applicable to the outer region.
The conditions on the ‘effective’ boundary R =1 will be obtained using asymptotic
matching with the inner region solutions, describing the Debye-scale transport
processes.

3.2. Debye-scale analysis

The inner problem is analysed using the stretched radial coordinate

ρ =
r − 1

δ
. (3.11)

Thus, conditions (2.27) and (2.28) apply at ρ = 0, as does the integral constraint (2.25).
We employ the standard expansions (Rubinstein & Zaltzman 2001)

c± ∼ c
(0)
± (ρ, θ) + δc

(1)
± (ρ, θ) + · · · , ϕ ∼ ϕ(0)(ρ, θ) + δϕ(1)(ρ, θ) + · · · , (3.12a, b)

which imply

c ∼ c(0)(ρ, θ) + δc(1)(ρ, θ) + · · · , q ∼ q (0)(ρ, θ) + δq (1)(ρ, θ) + · · · . (3.13a, b)

The corresponding expansions for the radial fluxes begin at O(δ−1):

j± ∼ δ−1j
(−1)

± (ρ, θ) + j
(0)
± (ρ, θ) + · · · , (3.14)
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in which

j
(−1)

± = −
∂c

(0)
±

∂ρ
∓ c

(0)
±

∂ϕ(0)

∂ρ
. (3.15)

The momentum balance in the radial direction implies O(δ−2) large pressure scaling.
The tangential momentum balance then suggests O(1) tangential velocities, whereby
the continuity equation, in conjunction with mass impermeability at ρ =0, imposes
O(δ) radial velocities. We therefore postulate the following expansions:

p ∼ δ−2p (−2)(ρ, θ) + · · · , (3.16a)

v ∼ v(0)(ρ, θ) + · · · , (3.16b)

u ∼ δu(1)(ρ, θ) + · · · . (3.16c)

Substitution of (3.12)–(3.16) into the governing equation, in conjunction with the
transformation (3.11), yields the Debye-scale differential equations. Thus, the radial
components of the Nernst–Planck equations (2.4) now appear as

δ−2
∂j

(−1)
±

∂ρ
+ δ−1

(
∂j

(0)
±

∂ρ
+ 2j

(−1)
±

)
+ O(1) = 0. (3.17)

Note that matching to the leading-order outer ionic fluxes requires the evaluation of
the correction term j

(0)
± in (3.14), and hence requires solving (3.17) up to O(δ−1). The

two terms in that asymptotic order, respectively, represent transverse ionic transport
(via both diffusion and electromigration) across the Debye layer and a curvature-
driven correction; because of the scale disparity, tangential ionic transport and ion
convection are manifested only at the O(1)-balance of (3.17).

At leading order, (3.17) yields ∂j
(−1)

± /∂ρ = 0, implying uniform O(δ−1) fluxes.
Matching to the O(1) fluxes in outer region is only possible if these fluxes vanish,

j
(−1)

± = 0. (3.18)

Use of (3.15) then yields the Boltzmann distributions

c
(0)
± (ρ, θ) = C(R = 1, θ) exp

{
∓

[
ϕ(0)(ρ, θ) − Φ(R = 1, θ)

]}
, (3.19)

wherein matching with the outer solution is accounted for. At O(δ−1) (3.17) yields

∂j
(0)
±

∂ρ
+ 2j

(−1)
± = 0. (3.20)

The second term in (3.20) represents the boundary curvature effect; in view of (3.18)
this term nullifies here, giving

∂j
(0)
±

∂ρ
= 0. (3.21)

Accordingly, these two fluxes are functions of θ only. Result (3.21) allows to connect
between the O(1) ionic fluxes at ρ = 0 and ρ → ∞

j
(0)
± (ρ = 0, θ) = j

(0)
± (ρ → ∞, θ). (3.22)

The leading-order electric potential is governed by Poisson equation (cf. (2.14))

∂2ϕ(0)

∂ρ2
= −q (0), (3.23)
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Substitution of the Boltzmann distributions (3.19) yields the nonlinear Poisson–
Boltzmann equation

∂2ϕ(0)

∂ρ2
= C(R = 1, θ) sinh

[
ϕ(0)(ρ, θ) − Φ(R = 1, θ)

]
. (3.24)

A single integration (Prieve et al. 1984; Rubinstein & Zaltzman 2001) and application
of the matching requirements yield the first-order differential equation

∂ϕ(0)

∂ρ
= −2C(R = 1, θ) sinh

ϕ(0)(ρ, θ) − Φ(R = 1, θ)

2
. (3.25)

Subsequent integration yields the familiar Gouy–Chapman distribution, describing
a monotonic approach (with exponential attenuation at large ρ) to the macroscale
distribution Φ(R = 1, θ).

The pressure field is now obtained from the leading-order radial momentum balance
(see (2.17))

∂p (−2)

∂ρ
=

∂2ϕ(0)

∂ρ2

∂ϕ(0)

∂ρ
. (3.26)

The need to match the O(1) outer pressure, in conjunction with the exponential
attenuation of ∂ϕ(0)/∂ρ at large ρ, readily yields

p (−2) =
1

2

(
∂ϕ(0)

∂ρ

)2

. (3.27)

This expression can be interpreted as an integral momentum equation, wherein the
mechanical pressure is balancing the Maxwell stress.

With the electric and pressure fields evaluated, it is now possible to solve the
leading-order tangential momentum balance (see (2.17))

∂2v(0)

∂ρ2
=

∂2p (−2)

∂θ
− ∂2ϕ(0)

∂ρ2

∂ϕ(0)

∂θ
. (3.28)

Integration of this equation (Prieve et al. 1984; Rubinstein & Zaltzman 2001) provides
v(0)(ρ). Extracting to ρ → ∞ yields

v(0) → ζ
∂Φ

∂θ
+ 2 ln

(
1 − tanh2 ζ

4

)
∂

∂θ
lnC, (3.29)

in which the right-hand side is evaluated at R = 1, with

ζ = ϕ(0)(ρ = 0, θ) − Φ(R = 1, θ) (3.30)

being the leading-order Debye-layer voltage (the ‘zeta potential’), in general a function
of θ .

4. Macroscale transport
With the Debye-scale fields available, the effective boundary conditions for the

outer fields at R = 1 are readily obtained using asymptotic matching.
(a) Matching of the tangential velocity component, together with (3.29), yields the

Dukhin–Derjaguin slip formula

V = ζ
∂Φ

∂θ
+ 2 ln

(
1 − tanh2 ζ

4

)
∂

∂θ
lnC at R = 1. (4.1a)
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Matching of the radial component, in conjunction with the inner scaling (3.16c),
implies

U (R = 1, θ) = 0. (4.1b)

Equations (4.1) are joined to form the vector condition

V = ζ∇SΦ + 2 ln

(
1 − tanh2 ζ

4

)
∇S lnC at R = 1, (4.2)

wherein

∇S = (I − n̂n̂) · ∇ (4.3)

is the surface gradient operator, in which n̂ is an outward pointing unit vector,
normal to the surface R = 1. The first term in (4.2) reflects electro-osmotic flow due
to tangential electric field; the second term, which originates in the pressure-gradient
term of (3.28), reflects diffusio-osmotic flow due to tangential salt gradients.

(b) The boundary condition governing Φ is provided by combining the uniform
Dirichlet condition (2.28) on the literal particle boundary r = 1 with the zeta potential
definition (3.30), to obtain

Φ(R = 1, θ) = V − ζ (θ). (4.4)

Thus, the uniform Dirichlet condition at r = 1 is transformed into a non-uniform
Dirichlet condition on the macroscale.

(c) The condition of zero anionic flux (2.26) at r =1 is transformed using (3.22)
to the comparable requirement J−(R = 1, θ) = 0. Use of (3.5b) furnishes the effective
boundary condition.

∂C

∂R
= C

∂Φ

∂R
at R = 1. (4.5)

(d) Similarly, kinetic condition (2.27) at r = 1 is transformed using (3.19) and (3.22)
to the equation

C(R = 1, θ) exp{−ζ (θ)} = γ

{
1 − J+(R = 1, θ)

k

}
. (4.6)

Use of (3.5a) furnishes the zeta potential distribution,

ζ = lnC − ln γ − ln

{
1 +

1

k

(
∂C

∂R
+ C

∂Φ

∂R

)}
, (4.7)

in which the right-hand side is evaluated at R = 1.
Lastly, it is necessary to rewrite force-free integral condition (2.25) in terms of

the macroscale variables. Since the total stress is divergence free (see (2.18)), Gauss
theorem allows us to replace the surface r = 1 with any other surface that encapsulates
it. We therefore choose the outer edge of the Debye layer, R = 1∮

R=1

[
−P I + ∇V + (∇V )† + ∇Φ∇Φ − 1

2
∇Φ · ∇Φ I

]
· n̂ dA = 0. (4.8)

System (4.2)–(4.8), together with differential equations (3.7)–(3.9) and boundary
conditions (3.10), constitutes a self-contained macroscale model which represents
electrokinetic transport on the single length scale a∗. In principle, it can be solved to
obtain the electrokinetic flow, and specifically the particle velocity U .

The preceding analysis can be easily extended to particles of arbitrary shape (see
Yariv 2010). By redefining ρ as a local coordinate normal to the surface, the entire
inner derivation remains valid when r = 1 and θ are respectively interpreted as the
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particle boundary and its parameterization. In the macroscale model, the surface
R = 1 is replaced throughout with the effective particle boundary. If the particle does
not possess an axis of symmetry which is aligned with the electric field, the problem is
no longer axisymmetric; then far-field condition (3.10c) must be modified to account
for particle rotation, whereby force-free condition (4.8) must be supplemented by a
comparable torque-free condition.

4.1. Comparison to the macroscale model of a comparable inert particle

In general, the particle acquires electric charge at steady-state condition (with equal
and opposite screening charge in the Debye layer). Accordingly, the present problem
is reminiscent of the electrophoresis of an ideally polarizable particle which possesses
a net electric charge; that problem, described in detail by Squires & Bazant (2004),
was analysed by Yariv (2008) for arbitrary values of electric field strength. It is
illuminating to compare the two macroscale models.

In the case of ideally polarizable particle, where the surface is chemically inert,
connection formulae (3.21) together with ionic impermeability on the particle surface
imply that the bulk ionic fluxes J± vanish at the effective boundary (see Yariv 2010).
In view of (3.5), both the electric potential and the salt concentration then satisfy
a homogeneous Neumann condition on that boundary. Since no salt gradient is
externally imposed, the salt distribution is rendered uniform, C ≡ 1. This uniformity
dramatically simplifies the governing equations, since the nonlinear terms in (3.7)
and (3.8) disappear. Then, ionic transport is decoupled from the flow, and is simply
described by Laplace’s equation governing Φ . Nonlinearity is then limited to the
Debye-layer capacitance model, whereby the problem can be solved in closed form
(Yariv 2008). In the present case, on the other hand, J+ is in general non-zero at R =1
(although its integral vanishes at steady-state conditions). Salt polarization appears,
significantly affecting the transport process. The governing equations are inherently
nonlinear, and in general do not admit a closed-form solution.

The difference between the present problem and the more familiar case of a
chemically inert ideally polarizable particle is also manifested in the effective boundary
condition on the electric potential. In both cases, the electric potential is uniform on the
literal boundary of the particle. In the present problem, this condition is transformed
into an effective non-uniform Dirichlet condition, where the potential distribution is
found (see (4.4)) by subtracting the zeta potential distribution – obtained using the
cation-selectivity condition (see (4.7)) – from the uniform particle potential. While
(4.4) is also valid for the case of an inert particle, it cannot be considered a boundary
condition, since the zeta potential distribution is unknown. In that case, the electric
potential is calculated using the homogeneous Neumann type condition, and (4.4)
then serves for the calculation of the zeta potential. These two distinct mathematical
procedures reflect the different underlying physics in the two problems.

In addition, the slip condition in the inert case constitutes a simplified version of
(4.2); since Φ and C satisfy homogeneous Neumann conditions on the macroscale
boundary R =1, the surface gradient in (4.2) may be replaced with the ordinary
gradient operator. Moreover, with C ≡ 1 the second term in (4.2), representing diffusio-
osmosis, is missing.

5. Weak-field analysis
We here calculate an approximate solution of macroscale model (4.2)–(4.8) for weak

applied fields, β � 1. This solution is obtained using linearization about the reference
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state (corresponding to the absence of an applied field)

C = 1, Φ = 0, V = 0, P = 0, (5.1a, b, c, d)

in which all ionic fluxes vanish. The uniform zeta potential in that state is provided
by (4.7)

ζ = − ln γ, (5.2)

and with no loss of generality we choose V = − ln γ .
For weak fields we accordingly write (primed variables denote perturbations relative

to the reference state)

C(R, θ; β) = 1 + βC ′(R, θ) + · · · , Φ(R, θ; β) = βΦ ′(R, θ) + · · · , (5.3a, b)

whereby the salt flux J and current density I become

J = β J ′ + · · · , I = β I ′ + · · · , (5.4)

with (see (3.4))

J ′ = −∇C ′, I ′ = −∇Φ ′. (5.5a, b)

Similarly, the zeta potential is linearized relative to (5.2)

ζ (θ; β) = − ln γ + βζ ′(θ) + · · · . (5.6)

The O(1) zeta potential and O(β) electric field, in conjunction with the slip formula
(4.2), suggest O(β) velocity and pressure fields

U (R, θ; β) = βU ′(R, θ) + · · · , (5.7a)

V (R, θ; β) = βV ′(R, θ) + · · · , (5.7b)

P (R, θ; β) = βP ′(R, θ) + · · · . (5.7c)

Similarly,

U = βU ′ + · · · . (5.8)

Both C ′ and Φ ′ satisfy Laplace’s equation

∇2C ′ = 0, ∇2Φ ′ = 0. (5.9a, b)

At large distances, as R → ∞

C ′ → 0, Φ ′ ∼ −R cos θ. (5.10a, b)

On the effective particle boundary C ′ satisfies the Neumann condition

∂C ′

∂R
=

∂Φ ′

∂R
at R = 1, (5.11)

while Φ ′ satisfies the Dirichlet condition

Φ ′ = −ζ ′(θ) at R = 1, (5.12)

wherein the zeta potential perturbation is obtained by linearization of (4.7)

ζ ′ = C ′ − 1

k

(
∂C ′

∂R
+

∂Φ ′

∂R

)
. (5.13)

Note that the linearized equations are semi-coupled: the ionic transport problem is
unaffected by the flow.
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Since (5.10b) constitutes the single inhomogeneity in the transport problem, it is
readily verified that the harmonic fields C ′ and Φ ′ involve only spherical harmonics
of the first degree. The solution of (5.9)–(5.13) is

C ′(R, θ) =
3

4R2 (1 + 2/k)
cos θ, Φ ′(R, θ) =

{
1 − 4/k

4R2 (1 + 2/k)
− R

}
cos θ. (5.14a, b)

Thus, the application of an electric field induces a dipole of salt concentration. As
expected, this dipole corresponds to salt enhancement (depletion) near the anodic
(cathodic) side of the particle, 0 < θ < π/2 (π/2 < θ < π). This dipole represents salt
flux from the anodic hemisphere to the cathodic hemisphere.

We can now solve the flow problem, consisting of the homogeneous Stokes
equations,

∇ · V ′ = 0, ∇2V ′ = ∇P ′; (5.15a, b)

the slip condition at R = 1, obtained by substituting (5.2) into (4.2),

V ′ = − ln γ ∇SΦ
′ + 4 ln

2

γ 1/4 + γ −1/4
∇SC

′; (5.16)

the far-field attenuation to a uniform stream

V ′ → −U ′ ı̂; (5.17)

and the force-free constraint∮
R=1

[
− P ′ I + ∇V ′ + (∇V ′)†] · n̂ dA = 0, (5.18)

in which only the Newtonian stress appears, since the Maxwell stress is quadratic
in β .

Our goal does not lie in the structure of the flow field, but rather in the particle
velocity U ′. Since the flow is governed by the standard Stokes equations, it is possible
to evaluate U ′ without the detailed calculation of the velocity field: thus, using
the method given by Brenner (1964), the force on the particle which is delivered by
the Newtonian stresses is provided by the quadrature

−3

2

∮
R=1

(V ′ + U ′ ı̂) dA. (5.19)

It is illuminating to focus upon the limit of fast kinetics, k → ∞. Then, C ′ = −Φ ′ at
R = 1. Considering slip condition (5.16), it is evident that for γ > 1, where the reference
zeta potential is negative, the electro-osmotic and diffusio-osmotic contributions act in
opposite directions, with the electro-osmotic component dominating. For γ < 1, where
the reference zeta potential is positive, the two contributions act together. Thus, the
direction in which the particle moves is that predicted by classical electrophoresis; due
to diffusio-osmosis, however, the electrophoretic velocity differs from that associated
with the reference zeta potential − ln γ .

Calculation of V ′ on R = 1 using (5.16) together with (5.14), followed by substitution
into (5.19), yields the force

12π ln
γ 1/4 + γ −1/4

2γ 1/4
− 6πU ′ (5.20)

in the x-direction. The second term is the familiar Stokes drag on a no-slip stationary
particle under an imposed uniform stream −U ′ ı̂ .
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Since (5.19) (or (5.20)) is equivalent to the left-hand side of (5.18), it must vanish.
We therefore obtain

U ′ = 2 ln
γ 1/4 + γ −1/4

2γ 1/4
. (5.21)

Thus, U ′ is positive for γ < 1 and negative for γ > 1, as expected. For a highly
charged particle, where γ � 1, U ′ ∼ − ln 4. Note that U ′ represents a normalization
of the dimensional velocity with the Smoluchowski-type scale ε∗ϕ∗E∗/µ∗.

6. Particle charge
Another quantity of interest is the net charge the particle acquires at steady state. In

principle, the particle may exchange charge with its surrounding electrolyte because of
its permeability to cations. The sign of this charge depends upon the kinetic constant
γ . For γ > 1, selectivity relation (2.27) suggets positive Debye layer space charge,
corresponding to negative zeta potential. We then expect a negative particle charge.

Use of Gauss law yields the following expression for the total particle charge
(normalized by ε∗a∗ϕ∗)

−
∮

r=1

∂ϕ

∂r
dA. (6.1)

In the thin-Debye-layer limit, this integral is expressed using the inner variable
(see (3.11)) as

−δ−1

∮
ρ=0

∂ϕ

∂ρ
dA. (6.2)

Substitution of (3.25) in conjunction with (3.30) yields the leading-order charge
approximation in terms of the zeta potential and bulk concentration at R = 1

2δ−1

∮
R=1

C sinh
ζ

2
dA. (6.3)

It is again useful to focus upon the limit k → ∞, where (4.7) yields, for the leading-
order zeta potential,

ζ = lnC − ln γ. (6.4)

Then, (6.3) becomes

δ−1

∮
R=1

C
[
(C/γ )1/2 − (γ /C)1/2

]
dA. (6.5)

For weak fields, where C ∼ 1 + O(β), this quadrature yields the value

4π (1 − γ )

δγ 1/2
. (6.6)

For γ > 1, this value is indeed negative, corresponding to a negative value of U (see
(5.21)).

7. Discussion
A closed microscale model of the electrokinetic flow about a conducting cation

exchanger was formulated. The dimensionless problem depends upon the following
parameters: (i) the Péclet number α, a dimensionless group which is independent of
particle size; (ii) the applied field magnitude β (normalized with the thermal scale);
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(iii) the two kinetic parameters, γ and k, which describe the cation exchange; and (iv)
the Debye thickness δ (normalized with particle size).

In all realistic situations δ → 0 whereby practical interest lies in the macroscale
transport. Using matched asymptotic expansions, an effective bulk model is extracted
on the particle scale. The bulk-scale differential equations comprise a diffusion–
advection equation governing the salt concentration, an elliptic equation governing
the electric potential and the Stokes equations with an electric body force. These
equations are supplemented by far-field conditions, as well as effective boundary
conditions which represent asymptotic matching with the Debye-scale field. The
governing equations are closed by macroscale version of the force-free integral
constraint.

An important element of the macroscale model is the emergence of the zeta
potential (the Debye-layer voltage) in the effective boundary condition governing the
fluid velocity. This quantity, which in general varies along the macroscale particle
boundary, can be determined only once wheras the salt concentration and the electric
field both are evaluated in the bulk.

The dependence of the zeta potential distribution upon the applied field is
reminiscent of ‘induced-charged’ electro-osmosis (Squires & Bazant 2004). Prevailing
models of induced-charge flows, however, tend to focus upon ideally polarizable
surfaces. While highly conducting, these surfaces are chemically inert also. As such,
the analysis of ideally polarizable surfaces is relatively simple: the salt concentration
is uniform, whereby ionic transport is decoupled from the flow. None of these benefits
applies to the present analysis; thus, the extracted macroscale model, valid for O(1)
values of the applied fields (comparable with the thermal scale), cannot be solved
analytically even for the simplest geometries.

Approximate solutions, however, can be obtained for weak fields, wherein the
particle velocity scales linearly with the applied field magnitude. Even that problem is
rather complicated because of the inevitable presence of concentration polarization.
Thus, while the uniform zeta potential and the linear dependence upon the electric
field may superficially resemble classical electrophoresis, particle motion is actually
driven by both electro-osmotic and diffusio-osmotic slip. Moreover, the diffusio-
osmotic flow mechanism differs from that in a classical diffusio-phoretic problem:
here, salt gradients are driven by salt ‘injection’ at the particle boundary (associated
with the need for zero anionic flux there), rather than an externally imposed ambient
gradient. Consequently, the diffusio-osmotic flow component is rotational, in contrast
to the irrotational flow structure in classical diffusio-phoresis (Prieve et al. 1984).
The existence of electric-field-driven salt gradients that affect particle velocity clearly
implies that Smoluchowski’s formula does not hold.

When the applied field is strong (β � 1) it is anticipated that the fluid velocity
becomes large, whereby α no longer qualifies as a Péclet number. Diffusion is then
dominated by convection except in a narrow layer surrounding the particle. Outside
that layer, the fluid is approximately ohmic. This situation somewhat resembles
singular convective–diffusive processes (Leal 2007), where the diffusive boundary-
layer thickness scales as an inverse power of the Péclet number. The present problem
is more subtle because of the active role of both convection and electromigration as
competitors to ion diffusion. Moreover, the (presumably large) velocity magnitude (or,
equivalently, the effective Péclet number) is not known a priori, and must be found –
together with the scaling of the other pertinent variables and the diffusion-layer
thickness – throughout the solution procedure. The investigation of this challenging
open problem constitutes a desired extension of the present analysis.
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There is an additional complication at strongly applied fields, which is best
understood in the one-dimensional framework which motivated the present analysis.
As the applied voltage increases, the salt gradient in the diffusion layer steepens,
eventually leading to vanishing salt concentrations at the cathodic exchanger (Levich
1962). While this phenomenon may appear to suggest a diffusion-limited current,
it is actually possible to achieve currents exceeding this limit. As explained by
Rubinstein, Zaltzman & Kedem (1997), the diffusion-layer structure breaks down at
O(ln δ) voltages, wherein a new ‘extended space charge’ region is formed between
the cathodic Debye layer and the diffusion layer (Rubinstein & Shtilman 1979). At
O(1/δ) voltages this space-charge region extends over an O(1) distance, in which the
salt concentration is small and the electric field is intense, scaling as 1/δ (Zaltzman &
Rubinstein 2007). The required voltages are then dominated by this region, and
possess an identical scaling (Ben & Chang 2002; Chu & Bazant 2005; Yariv 2009).

When the boundary is curved and the applied field is sufficiently strong, similar
transition may occur over part of the boundary; this renders a more complex
electrokinetic flow mechanism, termed as ‘electro-osmosis of the second kind’ (Dukhin
1991). It was suggested by Dukhin (1991) that the familiar Smoluchowski slip
formula can be applied to second-kind electro-osmosis at overlimiting conditions,
provided the zeta potential also accounts for the voltage drop on the extended-space-
charge layer. Using these heuristic arguments and assuming large Péclet numbers,
Dukhin (1991) obtained an electrophoretic velocity that scales as the square of the
applied field. This analysis was improved by Mishchuk & Takhistov (1995). Ben &
Chang (2002) employed asymptotic methods to derive an approximate current–voltage
characteristics for a one-dimensional model problem; using these characteristics to
describe transport process on the cathodic hemisphere, the authors obtained a more
sophisticated model for the electrophoretic problem. In a later analysis, Ben et al.
(2004) found a different scaling for the velocity, as the electric-field to the 2/3-power,
at the large-Péclet limit. Both of these power-law predictions are in some qualitative
agreement with existing experimental data at different regimes (Mishchuk & Takhistov
1995; Barany, Mishchuk & Prieve 1998). A different velocity scaling, with the third
power of electric field, was found by Zaltzman & Rubinstein (2007) (see also Kim
et al. 2007). The singular problem of large Péclet numbers and overlimiting currents
was recently analysed by Kalaı̆din et al. (2009) for a specific distinguished limit, where
the applied field scales as δ−1/2.

The transition to overlimiting currents occurs when the electric field becomes large,
in some sense. The same is true for the transition to the strong-convection regime
(large Péclet numbers), since the velocity scale is set by the applied field magnitude.
In general, the strong convection regime is reached when the applied field E∗ becomes
large compared with the thermal field scale ϕ∗/a∗ (see (2.2)); overlimiting currents,
on the other hand, occur at voltages which are greater than O(ln δ). Whether and
how these two ‘strong-field’ limits are related is yet unclear. The obvious difficulties
in resolving the problem of second-kind electro-osmosis at the overlimiting current
regime only emphasize the importance of the present systematic analysis.

This work was supported by the Israel Science Foundation.
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